\(\int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx\) [324]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 202 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\frac {7 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {10 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {7 \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {10 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d}-\frac {7 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \]

[Out]

10/3*sec(d*x+c)^(3/2)*sin(d*x+c)/a^2/d-7/3*sec(d*x+c)^(5/2)*sin(d*x+c)/a^2/d/(1+sec(d*x+c))-1/3*sec(d*x+c)^(7/
2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^2-7*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d+7*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*
d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d+10/3*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3317, 3901, 4104, 3872, 3853, 3856, 2719, 2720} \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {7 \sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{3 a^2 d (\sec (c+d x)+1)}+\frac {10 \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a^2 d}-\frac {7 \sin (c+d x) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {10 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a^2 d}+\frac {7 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}-\frac {\sin (c+d x) \sec ^{\frac {7}{2}}(c+d x)}{3 d (a \sec (c+d x)+a)^2} \]

[In]

Int[Sec[c + d*x]^(5/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

(7*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + (10*Sqrt[Cos[c + d*x]]*EllipticF
[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^2*d) - (7*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a^2*d) + (10*Sec[c + d*x
]^(3/2)*Sin[c + d*x])/(3*a^2*d) - (7*Sec[c + d*x]^(5/2)*Sin[c + d*x])/(3*a^2*d*(1 + Sec[c + d*x])) - (Sec[c +
d*x]^(7/2)*Sin[c + d*x])/(3*d*(a + a*Sec[c + d*x])^2)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3317

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Dist
[d^(n*p), Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x
] &&  !IntegerQ[m] && IntegersQ[n, p]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3901

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Dist[d^2/(a*b*(2*m + 1)),
Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[
m])

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx \\ & = -\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \frac {\sec ^{\frac {5}{2}}(c+d x) \left (\frac {5 a}{2}-\frac {9}{2} a \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{3 a^2} \\ & = -\frac {7 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {\int \sec ^{\frac {3}{2}}(c+d x) \left (\frac {21 a^2}{2}-15 a^2 \sec (c+d x)\right ) \, dx}{3 a^4} \\ & = -\frac {7 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}-\frac {7 \int \sec ^{\frac {3}{2}}(c+d x) \, dx}{2 a^2}+\frac {5 \int \sec ^{\frac {5}{2}}(c+d x) \, dx}{a^2} \\ & = -\frac {7 \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {10 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d}-\frac {7 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {5 \int \sqrt {\sec (c+d x)} \, dx}{3 a^2}+\frac {7 \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{2 a^2} \\ & = -\frac {7 \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {10 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d}-\frac {7 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2}+\frac {\left (5 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^2}+\frac {\left (7 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a^2} \\ & = \frac {7 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {10 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {7 \sqrt {\sec (c+d x)} \sin (c+d x)}{a^2 d}+\frac {10 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a^2 d}-\frac {7 \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{3 a^2 d (1+\sec (c+d x))}-\frac {\sec ^{\frac {7}{2}}(c+d x) \sin (c+d x)}{3 d (a+a \sec (c+d x))^2} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 2.01 (sec) , antiderivative size = 287, normalized size of antiderivative = 1.42 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {e^{-\frac {1}{2} i (4 c+3 d x)} \left (-1+e^{i c}\right ) \cos \left (\frac {1}{2} (c+d x)\right ) \csc \left (\frac {c}{2}\right ) \left (-10-37 e^{i (c+d x)}-65 e^{2 i (c+d x)}-82 e^{3 i (c+d x)}-68 e^{4 i (c+d x)}-53 e^{5 i (c+d x)}-21 e^{6 i (c+d x)}+10 i \left (1+e^{i (c+d x)}\right )^3 \left (1+e^{2 i (c+d x)}\right ) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+7 e^{i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \left (1+e^{2 i (c+d x)}\right )^{3/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sqrt {\sec (c+d x)}}{12 a^2 d \left (1+e^{2 i (c+d x)}\right ) (1+\cos (c+d x))^2} \]

[In]

Integrate[Sec[c + d*x]^(5/2)/(a + a*Cos[c + d*x])^2,x]

[Out]

-1/12*((-1 + E^(I*c))*Cos[(c + d*x)/2]*Csc[c/2]*(-10 - 37*E^(I*(c + d*x)) - 65*E^((2*I)*(c + d*x)) - 82*E^((3*
I)*(c + d*x)) - 68*E^((4*I)*(c + d*x)) - 53*E^((5*I)*(c + d*x)) - 21*E^((6*I)*(c + d*x)) + (10*I)*(1 + E^(I*(c
 + d*x)))^3*(1 + E^((2*I)*(c + d*x)))*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + 7*E^(I*(c + d*x))*(1 + E^
(I*(c + d*x)))^3*(1 + E^((2*I)*(c + d*x)))^(3/2)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sqrt[
Sec[c + d*x]])/(a^2*d*E^((I/2)*(4*c + 3*d*x))*(1 + E^((2*I)*(c + d*x)))*(1 + Cos[c + d*x])^2)

Maple [A] (verified)

Time = 9.83 (sec) , antiderivative size = 413, normalized size of antiderivative = 2.04

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}+\frac {6 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right )}-\frac {22 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}+\frac {14 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{3 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {16 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}\right )}{2 a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(413\)

[In]

int(sec(d*x+c)^(5/2)/(a+cos(d*x+c)*a)^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a^2*(1/3*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)^3+6*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)-
22/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c
)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+14*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(
1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos
(1/2*d*x+1/2*c),2^(1/2)))-2/3*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2
*d*x+1/2*c)^2-1/2)^2+16*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*
c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.62 \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=-\frac {10 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 2 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 10 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 2 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 2 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 21 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 2 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + i \, \sqrt {2} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (21 \, \cos \left (d x + c\right )^{3} + 32 \, \cos \left (d x + c\right )^{2} + 8 \, \cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{3} + 2 \, a^{2} d \cos \left (d x + c\right )^{2} + a^{2} d \cos \left (d x + c\right )\right )}} \]

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(10*(I*sqrt(2)*cos(d*x + c)^3 + 2*I*sqrt(2)*cos(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*weierstrassPInverse(
-4, 0, cos(d*x + c) + I*sin(d*x + c)) + 10*(-I*sqrt(2)*cos(d*x + c)^3 - 2*I*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)
*cos(d*x + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*(-I*sqrt(2)*cos(d*x + c)^3 - 2*I
*sqrt(2)*cos(d*x + c)^2 - I*sqrt(2)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x +
c) + I*sin(d*x + c))) + 21*(I*sqrt(2)*cos(d*x + c)^3 + 2*I*sqrt(2)*cos(d*x + c)^2 + I*sqrt(2)*cos(d*x + c))*we
ierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) + 2*(21*cos(d*x + c)^3 + 32*co
s(d*x + c)^2 + 8*cos(d*x + c) - 2)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^3 + 2*a^2*d*cos(d*x +
c)^2 + a^2*d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(5/2)/(a+a*cos(d*x+c))**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^2, x)

Giac [F]

\[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {5}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \]

[In]

integrate(sec(d*x+c)^(5/2)/(a+a*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {5}{2}}(c+d x)}{(a+a \cos (c+d x))^2} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

[In]

int((1/cos(c + d*x))^(5/2)/(a + a*cos(c + d*x))^2,x)

[Out]

int((1/cos(c + d*x))^(5/2)/(a + a*cos(c + d*x))^2, x)